给定一个m×n的二维网格grid,每个格子中有一个非负整数。请找出一条从左上角 (0, 0) 到右下角 (m-1, n-1) 的路径,使得路径上的数字总和最小。每次只能向右或向下移动。横线处应该填入的是()
1 #include <iostream> 2 #include <vector> 3 #include <algorithm> 4 using namespace std; 5 6 int minPathSum(vector<vector<int>>& grid) { 7 int m = grid.size(); 8 int n = grid[0].size(); 9 10 vector<vector<int>> dp(m, vector<int>(n, 0)); 11 12 dp[0][0] = grid[0][0]; 13 for (int j = 1; j < n; j++) { 14 dp[0][j] = dp[0][j - 1] + grid[0][j]; 15 } 16 for (int i = 1; i < m; i++) { 17 dp[i][0] = dp[i - 1][0] + grid[i][0]; 18 } 19 for (int i = 1; i < m; i++) { 20 for (int j = 1; j < n; j++) { 21 ———————————————————————————————— 22 } 23 } 24 return dp[m - 1][n - 1]; 25 } 26 27 int main() { 28 int m, n; 29 cin >> m >> n; 30 vector<vector<int>> grid(m, vector<int>(n)); 31 for (int i = 0; i < m; i++) { 32 for (int j = 0; j < n; j++) { 33 cin >> grid[i][j]; 34 } 35 } 36 int result = minPathSum(grid); 37 cout << result << endl; 38 39 return 0; 40 }
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][1];
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
dp[i][j] = min(dp[i - 1][j], dp[i][j]) + grid[i][j];
dp[i][j] = min(dp[i][j], dp[i][j - 1]) + grid[i][j];